Home | Resources | Archives |Contact Us


Flooding In Pakistan

Human Induced Climate Change

Over 20 million people have been displaced by unprecedented flooding in Pakistan:

By mid-August, the extreme monsoon floods that had overwhelmed northwestern Pakistan had traveled downstream into southern Pakistan. The top image, acquired by the Landsat 5 satellite on August 12, 2010, shows flooding near Kashmor, Pakistan, just before the second wave of the flood hit. The lower image, provided for context, shows the region on August 9, 2009.
Even before the second wave reached this section of the Indus, floods covered much of the city of Khewali and the surrounding farmland. The flood-widened river is muddy and brown in the top image, and it impinges on the cement-gray town of Khewali.
As if constrained by a belt, the river is cinched near Khewali. The constraint is the Guddu Barrage, a barrier designed to channel irrigation water to farmland in the northern Sindh district. The “C”-shaped barrier that controls the shape of the flood in the top image is itself visible in the lower image. Canals extend away from the barrage on both sides of the river. A road runs along the canal, and it too appears to be flooded. Stream gauges at the Guddu Barrage recorded extremely high levels of water (more than 910,000 cubic feet per second) flowing down the Indus on August 12. The flow rate increased on August 13 as the second wave of flooding reached the barrage.
On August 18, the Pakistan government stated that 15.4 million people had been directly affected by the flood with nearly a million homes damaged or destroyed. The land along the Indus River is prime farmland, and nearly 80 percent of the flood victims are farmers who have lost crops, animals, and equipment. At least 3.2 million hectares of crops had been destroyed as of August 18, reported the United Nations Office for the Coordination of Humanitarian Affairs.
References
Pakistan Meteorological Office Flood Forecasting Division. (2010, August 18). GUDDU inflow August 2010. Accessed August 18, 2010.
Petley, D. (2010, August 17). Pakistan flood update: the Kirthal Canal. Dave’s Landslide Blog. Accessed August 18, 2010.
United Nations Office for the Coordination of Humanitarian Affairs. (2010, August 18). Pakistan monsoon floods situation report #14. ReliefWeb. Accessed August 18, 2010.
Unosat. (2010, August 14). Analysis of probable flood-affected villages, towns and infrastructure along the Indus River, Sindh Province, Pakistan. Accessed August 18, 2010.
NASA image by Robert Simmon, based on Landsat 5 data from the USGS Global Visualization Viewer. Caption by Holli Riebeek.

Flooding In Pakistan, Summer 2010

Flooding In Pakistan Picture 2

Floods In Pakistan, Summer 2010

Posted in Uncategorized | Tagged , , , | Leave a comment

What Are Humans Doing to the Water?

The The Membrane Domain is working on an experiment that involves global warming, human induced climate change and water. For the article “What Are Humans Doing to the Water?”, click here.

Posted in Uncategorized | Tagged , , , , , , , | Comments closed

How Much Greenhouse Gases Are From the U.S.?

There are still some skeptics about global warming. In any event, there is a need for humans to become socially responsible for our habitat.

ARTICLE
What are greenhouse gases and how much are emitted by the United States?
Greenhouse gases trap heat from the sun and warm the planet’s surface. Of U.S. greenhouse gas emissions, 87% are related to energy consumption. Since 1990, greenhouse gas emissions in the United States have grown by about 1% per year. In 2005, about 21% of the world’s total energy-related carbon dioxide was emitted by the United States.

Because greenhouse gases trap radiation (heat) from the sun and warm the planet’s surface, a certain amount of these gases is beneficial (see “Did You Know?”). But as concentrations of these gases increase due to human activity, more warming occurs than would happen naturally. In 2006, about 7.1 billion metric tons carbon dioxide equivalent (CO2e) of greenhouse gases were emitted by the United States.1 Other countries with significant emissions include China, the countries of Europe, Russia, and Japan.
What Specific Kinds of Greenhouse Gases Does the United States Emit?
The major greenhouse gases the United States emits as a result of human activity and that are included in U.S. and international emissions estimates are:
Carbon dioxide (CO2)
Methane (CH4)
Nitrous oxide (N2O)
High-GWP gases, which are:
Hydrofluorocarbons (HFCs)
Perfluorocarbons (PFCs)
Sulfur hexafluoride (SF6)
There are other greenhouse gases that are not counted in U.S. or international greenhouse gas inventories:
Water vapor is the most abundant greenhouse gas, but most scientists believe that water vapor produced directly by human activity contributes very little to the amount of water vapor in the atmosphere, and therefore EIA does not estimate emissions of water vapor. Recent research by NASA suggests a stronger impact from the indirect human effects on water vapor concentrations.
Ozone is technically a greenhouse gas because it has an effect on global temperature. However, at higher elevations in the atmosphere (stratosphere), where it occurs naturally, it is needed to block harmful UV light. At lower elevations of the atmosphere (troposphere) it is harmful to human health and is a pollutant regulated independently of its warming effects.
How Much of Total U.S. Greenhouse Gas Emissions Are Energy Related?
Of the total amount of greenhouse gases emitted in 2006, about 5.9 billion metric tons were carbon dioxide from energy consumption (the burning of fossil fuels). Another 0.3 billion metric tons CO2e came from energy-related greenhouse gases other than carbon dioxide for a total of 6.2 out of 7.1 billion metric tons CO2e or about 87%.
Which Fuel Accounts for the Largest Share of Energy-Related Carbon Dioxide Emissions?
Petroleum is the largest fuel source of carbon dioxide emissions from energy consumption in the United States. Petroleum carbon dioxide emissions were 2.6 billion metric tons, or 44% of the total, in 2006.
Other important fossil fuel sources of carbon dioxide emissions include:
Coal — accounting for 2.1 billion metric tons (36%) in 2006
Natural gas — accounting for 1.2 billion metric tons (20%) in 2006
What Are the Important Non-Carbon Dioxide (Non-CO2) Greenhouse Gases Related to the Production and Consumption of Energy?
Of the non-CO2 gases that contribute to energy-related greenhouse gas emissions, methane contributes most of the 0.3 billion metric tons CO2e — mainly from emissions that leak out of natural gas pipelines, coal mines, and petroleum exploration and production facilities.
How Are Energy-Related Greenhouse Gas Emissions Distributed Throughout Our Economy and What Sector of Our Economy Is Responsible for the Most Emissions?
Electric power generation and transportation are the biggest sources of energy-related greenhouse gas emissions in our nation, with respective shares of 39.8% and 33.7% of our total energy-related emissions in 2006. Taken together, emissions in power generation and transportation increased at an average annual rate of 1.5% between 1990 and 2006. The rest of our emissions result from direct use of fossil fuels in homes, commercial buildings, and industry. These emissions are virtually unchanged since 1990.
Since electric power is ultimately used in homes, commercial buildings, and industry, emissions associated with power generation can be allocated to each end-use sector based on their electricity consumption to obtain another perspective. Using this approach, the transportation sector is currently the largest emitter. Our cars, trucks, planes, trains, ships, and barges produced 2.0 billion metric tons CO2e (1.9 billion metric tons of carbon dioxide plus 0.1 billion metric tons CO2e in other gases) in 2006. Emissions from this sector have grown at an average rate of 1.4% since 1990.
The industrial sector — which consists of activities such as manufacturing, construction, mining, and agriculture � emits almost as much as the transportation sector — a total of 1.9 billion metric tons of energy-related CO2e (1.7 billion metric tons of carbon dioxide plus 0.2 billion metric tons CO2e in other gases). Its emissions have been largely stable since 1990 due primarily to the loss of energy-intensive industries such as steel.
The commercial sector — which includes such sources as schools, office buildings, and shopping malls — emits a total of 1.0 billion metric tons CO2e of energy-related carbon dioxide, with almost 80% of it coming from the power plants providing the electricity used in the buildings. Its emissions have grown the fastest since 1990, at an average annual rate of 1.8%.
The residential sector — the homes we live in — emits 1.2 billion metric tons of CO2e, almost all of which is energy-related carbon dioxide, over 70% of which is produced at power plants providing homes electricity. Residential sector emissions have grown at an average annual rate of 1.4% since 1990.

What are greenhouse gases and how much are emitted by the United States?
Greenhouse gases trap heat from the sun and warm the planet’s surface. Of U.S. greenhouse gas emissions, 87% are related to energy consumption. Since 1990, greenhouse gas emissions in the United States have grown by about 1% per year. In 2005, about 21% of the world’s total energy-related carbon dioxide was emitted by the United States.

Because greenhouse gases trap radiation (heat) from the sun and warm the planet’s surface, a certain amount of these gases is beneficial (see “Did You Know?”). But as concentrations of these gases increase due to human activity, more warming occurs than would happen naturally. In 2006, about 7.1 billion metric tons carbon dioxide equivalent (CO2e) of greenhouse gases were emitted by the United States.1 Other countries with significant emissions include China, the countries of Europe, Russia, and Japan.
What Specific Kinds of Greenhouse Gases Does the United States Emit?
The major greenhouse gases the United States emits as a result of human activity and that are included in U.S. and international emissions estimates are:
Carbon dioxide (CO2)
Methane (CH4)
Nitrous oxide (N2O)
High-GWP gases, which are:
Hydrofluorocarbons (HFCs)
Perfluorocarbons (PFCs)
Sulfur hexafluoride (SF6)
There are other greenhouse gases that are not counted in U.S. or international greenhouse gas inventories:
Water vapor is the most abundant greenhouse gas, but most scientists believe that water vapor produced directly by human activity contributes very little to the amount of water vapor in the atmosphere, and therefore EIA does not estimate emissions of water vapor. Recent research by NASA suggests a stronger impact from the indirect human effects on water vapor concentrations.
Ozone is technically a greenhouse gas because it has an effect on global temperature. However, at higher elevations in the atmosphere (stratosphere), where it occurs naturally, it is needed to block harmful UV light. At lower elevations of the atmosphere (troposphere) it is harmful to human health and is a pollutant regulated independently of its warming effects.
How Much of Total U.S. Greenhouse Gas Emissions Are Energy Related?
Of the total amount of greenhouse gases emitted in 2006, about 5.9 billion metric tons were carbon dioxide from energy consumption (the burning of fossil fuels). Another 0.3 billion metric tons CO2e came from energy-related greenhouse gases other than carbon dioxide for a total of 6.2 out of 7.1 billion metric tons CO2e or about 87%.
Which Fuel Accounts for the Largest Share of Energy-Related Carbon Dioxide Emissions?
Petroleum is the largest fuel source of carbon dioxide emissions from energy consumption in the United States. Petroleum carbon dioxide emissions were 2.6 billion metric tons, or 44% of the total, in 2006.
Other important fossil fuel sources of carbon dioxide emissions include:
Coal — accounting for 2.1 billion metric tons (36%) in 2006
Natural gas — accounting for 1.2 billion metric tons (20%) in 2006
What Are the Important Non-Carbon Dioxide (Non-CO2) Greenhouse Gases Related to the Production and Consumption of Energy?
Of the non-CO2 gases that contribute to energy-related greenhouse gas emissions, methane contributes most of the 0.3 billion metric tons CO2e — mainly from emissions that leak out of natural gas pipelines, coal mines, and petroleum exploration and production facilities.
How Are Energy-Related Greenhouse Gas Emissions Distributed Throughout Our Economy and What Sector of Our Economy Is Responsible for the Most Emissions?
Electric power generation and transportation are the biggest sources of energy-related greenhouse gas emissions in our nation, with respective shares of 39.8% and 33.7% of our total energy-related emissions in 2006. Taken together, emissions in power generation and transportation increased at an average annual rate of 1.5% between 1990 and 2006. The rest of our emissions result from direct use of fossil fuels in homes, commercial buildings, and industry. These emissions are virtually unchanged since 1990.
Since electric power is ultimately used in homes, commercial buildings, and industry, emissions associated with power generation can be allocated to each end-use sector based on their electricity consumption to obtain another perspective. Using this approach, the transportation sector is currently the largest emitter. Our cars, trucks, planes, trains, ships, and barges produced 2.0 billion metric tons CO2e (1.9 billion metric tons of carbon dioxide plus 0.1 billion metric tons CO2e in other gases) in 2006. Emissions from this sector have grown at an average rate of 1.4% since 1990.
The industrial sector — which consists of activities such as manufacturing, construction, mining, and agriculture � emits almost as much as the transportation sector — a total of 1.9 billion metric tons of energy-related CO2e (1.7 billion metric tons of carbon dioxide plus 0.2 billion metric tons CO2e in other gases). Its emissions have been largely stable since 1990 due primarily to the loss of energy-intensive industries such as steel.
The commercial sector — which includes such sources as schools, office buildings, and shopping malls — emits a total of 1.0 billion metric tons CO2e of energy-related carbon dioxide, with almost 80% of it coming from the power plants providing the electricity used in the buildings. Its emissions have grown the fastest since 1990, at an average annual rate of 1.8%.
The residential sector — the homes we live in — emits 1.2 billion metric tons of CO2e, almost all of which is energy-related carbon dioxide, over 70% of which is produced at power plants providing homes electricity. Residential sector emissions have grown at an average annual rate of 1.4% since 1990.

Posted in Uncategorized | Tagged , , , , | Comments closed